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Reply to “A Tale of Two Logratios (is this a counter‐example to using ILRs?)” by M. Greenacre 
 

Martín-Fernández 
20 February 2018 

 

 
First of all, thanks to Michael for introducing this discussion and 
preparing the example. After reading your comments and Alex’s 
ideas, I realize that we need to improve our explanations about 
CoDa-techniques.  
 
Let us start … my answer to the question in the title “is this a 
counter-example to using ILRs?” is “absolutely not, this is not a 
counter-example to using ILRs, this is a perfect example of 
poor statistical analysis”.  In what follows, I justify this answer. 
 
As far as I know, when one starts an analysis the most important 
thing is the objective, the goal, that is, the “question”. In this case, 
the question given is  
 
“Researchers	are	interested	in	relationships	between	these	variables,	
and	they	have	heard	about	CoDa	and	the	ILR	transformation.	In	par-
ticular	they	are	interested	in	how	the	high	alcohol	spirits	are	related	
to	the	lower	alcohol	wine	&	beer.” 

 

 
 
The first decision of the researcher is about the “total”. They must decide if the “total” is informa-
tive or not. That is, we have to decide if the first row (1.2, 1.8, 0.6) is equivalent or not to any 
composition in its equivalence class, where one representative is (33.33%, 50%, 16.67%). In 
other words, for instance, do we want to analyse if people who drink a large (absolute) quantity 
of spirits also drink a large (absolute) quantity of wine & beer? Or, perhaps, do we want to ana-
lyse if people who consume high percentage spirits drink more wine than beer? Section A gives 
the analysis where the “absolute” quantity matters. Section B is “our” CoDa-section. 
 
• Section A: “the absolute quantity matters” 
 
In this section, when one compares row #9: (1.4, 1.5, 0.4) with row #19: (1.5,1.7,0.6) one states 
that #19 drinks more wine, beer and spirits. We can assume that the sample space of these 
samples is R3. The Euclidean distance between both is d_e(#9,#19)=0.30. When one com-
pares row #19 with row #16: (1.6,1.5,0.4) one states that #19 drinks more beer and spirits, but 
less wine. The Euclidean distance between both is again d_e(#16,#19)=0.30. Note that in both 
cases #19 drinks +0.2 more spirits than #9 and #16. 
When we amalgamate wine and beer, we are taking R2 as sample space. Again, we respective-
ly obtain #9*=(2.9,0.4), #16*=(3.1,0.4), and #19*=(3.2,0.6). Now we state that #19* drinks more 
wine & beer and more spirits than #9*, and #16* as well. However in this case, d_e(#9*,#19*)= 
0.36, a larger difference than before, and d_e(#16*,#19*)=	0.22, less than before. That is, when 
we amalgamate variables, the distances can decrease or can increase despite of working in a 
sample space of reduced dimension. Note that the concept of variability is related with the Eu-
clidean distance, therefore the amalgamation operation affects the variability. 
 

	 wine beer spirits 
[1] 1.2 1.8 0.6 
[2] 1.8 1.4 0.3 
[3] 2.8 0.3 0.6 
[4] 2.6 0.5 0.5 
[5] 2.5 0.7 0.7 
[6] 3.0 0.1 0.3 
[7] 1.1 1.9 0.3 
[8] 1.9 1.2 0.3 
[9] 1.4 1.5 0.4 

[10] 1.7 1.3 0.2 
[11] 1.3 1.7 0.3 
[12] 2.4 0.8 0.3 
[13] 2.1 1.1 0.5 
[14] 1.0 2.1 0.2 
[15] 2.0 1.1 0.6 
[16] 1.6 1.5 0.4 
[17] 2.7 0.4 0.1 
[18] 2.3 0.9 0.4 
[19] 1.5 1.7 0.6 
[20] 2.2 1.0 0.5 
[21] 2.9 0.1 0.4 
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 If the “absolute” quantity matters, the 
pairwise scatterplots of the raw data de-
scribe the relation between pairs of varia-
bles in an absolute scale, taking the Eu-
clidean distance in real space as refer-
ence for interpretation. The only relation is 
between wine and beer (r=-0.99), that is 
“more wine less beer”. 
 
 

 

What happens with amalgamated data? 
 
The plot shows no relation between spirits 
and wine & beer: regardless of the quanti-
ty of wine & beer, people drink more or 
less spirits; there is no pattern in the plot. 
Note that the sum wine+beer is propor-
tional to (wine+beer)/2, the arithmetic 
mean. Therefore the plot “spirits” against 
“mean(wine,beer)” will show the same 
pattern.  
 

 

What happens with the geometric mean? 
 
The plot is not so “nice”, but the interpre-
tation is the same: no relation between 
the amount of spirits and wine & beer is 
shown.  
The plot is not “nice” because the data set 
was created with an “additive” pattern (4 
levels of sum). However, one can easily 
create a similar example, where the nice 
plot is obtained for the geometric mean. 
 

 Using PCA for the original (raw) data we 
get the loadings  

 Comp.1 
(85%) 

Comp.2 
(≈15%) 

Comp.3 
(≈0%) 

wine 0.721 0.054 0.690 
beer -0.692 0.086 0.716 

spirits 0.020 0.995 -0.100 
  
PC1 (85%) represents “wine” against 
“beer”, that is, an ordination of the sam-
ples from (small amount of wine & large 
amount of beer) to (large amount of wine 
& small amount of wine). 
PC2 (15%) represents “spirits”, that is an 
ordination according the amount of “spir-
its”. 
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Conclusion: when “absolute” information matters, the quantity of spirits has no association 
neither with wine, nor with beer, nor with wine+beer. The quantity of wine has relation with the 
quantity of beer. 
 
 
• Section B: “the relative information is the issue” 
 
When our goal is the analysis of the relative information, each sample is an equivalence class. 
A representative of the class can be taken to be proportions, percentages, or the like, to facili-
tate interpretations. Now, the 3-part simplex can be taken as the sample space, where the rep-
resentatives of all equivalence classes are.  As is well known, this “closure” operation is not 
essential when working with log-ratio techniques. However, sometimes it is helpful to interpret 
the results. 
 
In this section, one can consider that the representatives of rows #9, #16 and #19 in percent-
ages are the values shown in the column “%” of the following table: 
 
#row raw % d_e d_a 
#9 (1.4, 1.5, 0.4) (42.42%, 45.45%, 12.12%) d_e(#9,#19)= 0.3 d_a(#9,#19)=	0.25 

#16 (1.6,1.5,0.4) (45.71%,42.86%,11.43%) d_e(#16,#19)= 0.3 d_a(#16,#19)=	0.33 
#19 (1.5,1.7,0.6) (39.47%,44.74%,15.79%)   
 
 

 

When we compare #9 and #19 one states that #19 
drinks RELATIVELY LESS wine and beer and REL-
ATIVELY MORE spirits. The Aitchison distance be-
tween both is d_a(#9,#19)=0.25. When one com-
pares row #19 with row #16 one states that #19 
drinks RELATIVELY MORE beer and spirits but 
RELATIVELY LESS wine. The Aitchison distance 
between both is d_a(#16,#19)=0.33. Note that the 
comparison using RELATIVE information is different 
from the ABSOLUTE case (previous Section A) … 
But anyway … there is nothing unexpected, isn’t it? 
 
After amalgamation we are working in the 2-part 
simplex; the parts are sprits and wine & beer.  
We then obtain #9*=(87.88%,12.12%),  
#16*=(88.57%,11.43%), and #19*=(84.21%,15.79%), 
respectively. Now we state that #19* drinks RELA-
TIVELY LESS wine & beer and RELATIVELY MORE 
spirits than #9* and #16* as well. Now 
d_a(#9*,#19*)= 0.22 and d_a(#16*,#19*)=	 0.26, 
which is in both cases less than before. In this exam-
ple, the Aitchison distances after amalgamation are 
smaller than without amalgamation. However, this is 
not true for all CoDa sets, that is, one can find exam-
ples where the amalgamation operation “distorts” the 
Aitchison distances. When we amalgamate parts, the 
distances (both Euclidean and Aitchison) can de-
crease or can increase; that is, here we do not have 
the “dominance property” of distances. 
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Because we are working with 3-part compositions 
(equivalence class) we can plot them in a ternary 
diagram.  
One quick look at the diagram suggests that spirits 
do not vary too much. On the other hand, the varia-
bility is mainly due to the relation between wine and 
beer. This simple plot suggests that no relation exists 
between the relative consumption of spirits and the 
relative consumption of wine and of beer. Note that 
both high and low levels of wine consumption have 
simultaneously high and low levels of consumption of 
spirits. The same effect happens with beer and spir-
its. 

 
But, what about the variability for the subcompositions? 
 
Subcomposition (wine,spirits)       Subcomposition (beer,spirits)     Subcomposition (wine,beer) 

 
These diagrams suggest that the subcomposition [wine, spirits] has the lowest variability 
(range), whereas the other two have a similar variability. One must be cautious with this inter-
pretation because we are looking these diagrams with our “Euclidean eyes”. However, in this 
case, the variation array supports these interpretations. 
 

 

Spirits shows the lowest clr-variance (0.1238). 
The subcomposition (wine, beer) has the larg-
est log-ratio variance (1.3046). No log-ratio 
variance is “close” to zero, suggesting no-
proportionality for the pairs of parts. The nega-
tive signs in the log-ratio means suggest that, 
on average, people drink more wine than beer, 
more wine than spirits, and more beer than 
spirits. 

 

Using a pairwise scatterplot we can investigate 
how the numerator and the denominator in the 
log-ratios by pairs are varying. Note that the 
log-ratio variance of log(wine/beer) is due to a 
linear relationship between both parts: when 
one part increases in relative terms, the other 
diminishes relatively. On the other hand, no 
relation is suggested between spirits and wine, 
none between spirits and beer. 
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What about the amalgamated data?  
Because after amalgamation only two parts remain, we can represent the data on the simplex 
S2. 
 

 

The pattern is as expected, showing that 
we must avoid the confusion with linear 
correlation here!!  
Obviously, there is only one log-ratio 
here: log(spirits/(wine+beer)), with mean -
2.13 and variance 0.21. We can interpret 
that people, on average, drink more 
(wine+beer) than spirits, with a not “very 
large” variance. Replacing amalgamation 
with the arithmetic mean (wine+beer)/2 in 
the denominator, the mean changes to  
-1.43. Therefore, interpretation is the 
same: people also drink less spirits than 
the average of wine and beer. Note that a 
plot using the arithmetic mean will show 
again a “perfect” linear relation.                                                                                                                                 

 

Using the geometric mean of (wine,beer) 
and forming the corresponding log-ratio 
coordinate, the results are: mean=-1.01 
and var=0.19. That is, the same interpre-
tation as before. However, when we plot 
spirits against the sqrt(wine*beer) we 
obtain a very similar pattern as for the 
“absolute” case (Section A): no relation 
between the relative spirit consumption 
and the (wine&beer) consumption. 
 

 Regarding the log-ratio PCA for the origi-
nal 3-part CoDa set, one can plot both the 
PCs and the biplot. 
 
The loadings are: 
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The loadings suggest that the main variability 
(85%) corresponds to the log-ratio beer against 
(wine, spirits). The second (15%) is in the log-ratio 
spirits against (wine, beer), where beer has the 
smallest coefficient.  

 

When the optimal algorithm for Principal Balances 
is applied the result is  

 
That is, the SBP suggested is SBP1 

 
The corresponding ilr-coordinates have variances: 

 
corroborating the information in the coda-
dendrogram: the largest variance corresponds to 
the log-ratio between beer and (wine, spirits). 

 

However, we are interested in the relation be-
tween spirits and (wine, beer); therefore, we de-
fine a second SBP, SBP2: 

 
The corresponding ilr-coordinates have the statis-
tics 

 
Here we can see that people drink relatively more 
wine&beer than spirits, but the variability is con-
centrated in the logratio between wine and beer. 
We corroborate that people drink “relatively” more 
(wine, beer) than spirits, and a little bit more wine 
than beer. Moreover, by far, the largest variability 
is in the log-ratio between wine and beer. This 
variability represents 0.6523/0.8380 ≈ 78% of 
total variance. 
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I have defined two different log-ratio basis (SBP1 and SBP2), which address different goals 
(retained variance and spirits vs wine&beer, respectively). For each of the two log-ratio coordi-
nate sets we have the corresponding covariance matrix, of course both can be related to the 
variation matrix. Therefore, we can also consider the correlation matrix for each SBP. In particu-
lar for SBP2 we obtain the correlation matrix 

 
The correlation r12=0.5291 is interpreted by M. Greeancre as 

“The	conclusion	is	that	as	the	ratio	of	wine	to	beer	increases,	so	the	ratio	of	spirits	to	the	
group	wine&beer	of	lower	alcohol	drinks	increases.		

Now	there	is	an	ongoing	debate	about	using	amalgamations	rather	than	geometric	means	
to	simplify	the	interpretation.	So,	as	a	check,	the	ILR	balance	on	the	y-axis	is	plotted	 against	
the	 logratio	 of	 spirits	 divided	 by	 the	 sum	 (i.e.	 amalgamation)	 of	 wine	 and	 beer	 (Fig.	 2),	
what	 I	 call	an	amalgamation	balance.	 The	 two	 look	very	 similar,	apart	 from	some	 differ-
ences	at	 the	upper	end,	 so	 the	 researchers	 feel	 justified	 in	 their	 conclusions.	 But	 just	 to	
check	even	more,	they	plot	the	amalgamation	balance	against	log(wine/beer)	and	get	Fig.	3,	
a	surprise!	There	is	no	relationship:	correlation	=	0	(p=0.99).”	

 
Here my detailed answers: 
• “as	the	ratio	of	wine	to	beer	 increases,	so	the	ratio	of	spirits	 to	 the	group	wine&beer	of	 lower	

alcohol	drinks	 increases”: this is not a surprise, it is natural; it is the value of the correlation 
matrix, which comes from the variance matrix, i.e., from the variation matrix. HOWEVER, 
when the ratio spirits to the group wine&beer increases we have to consider different possi-
bilities. The table shows all the different scenarios in which a ratio increases 

Numerator: spirits + + ++ = - 
Denominator: wine&beer - = + - -- 

Where the symbols “+” and “-“ mean increase and decrease, respectively, and a double 
symbol means stronger variation. After the analysis of the data, I can conclude that the case 
for this example is as follows: “numerator: spirits: =” and “denominator: wine&beer: -“. That 
is, spirits has no important variation, whereas wine&beer decreases. Because the interpreta-
tion starts by “as	 the	 ratio	 of	wine	 to	 beer	 increases”, we state that “wine: increase: +” and 
“beer: decrease: -“. Due to the fact that beer diminishes faster than wine increases, it holds 
that  “wine*beer” has the trend to diminish. IMPORTANTLY, all the above discussion about 
the different scenarios for the ratio, is also valid for the log-ratio where the denominator is 
the “amalgamation”. 

•  “using	amalgamations	rather	than	geometric	means	 to	simplify	the	interpretation”: to be hon-
est, I don’t see at all any reason why the amalgamation in the denominator “simplifies” the 
interpretation. As I have shown in my analysis above, the use of amalgamation hides inter-
pretations. In addition, amalgamation affects distances, i.e., variability. 

• “…the	ILR	balance	on	the	y-axis	is	plotted	 against	the	logratio	of	spirits	divided	by	the	sum	(i.e.	
amalgamation)	of	wine	and	beer	(Fig.	 2),	what	I	call	an	amalgamation	balance.	The	two	look	very	
similar	apart	from	some	differences	at	the	upper	end”: no surprise here. Note that this correla-
tion is due to the fact that both log-ratios include spirits in the numerator. The correlation be-
tween both logratios is r= 0.82 (p-value = 6.137e-06), significant. HOWEVER, if you remove 
the numerator “spirits” of both logratios then the correlation between log(wine+beer) and 
log(sqrt(win*beer)) is only 0.18 (p-value= 0.43 !!), not significant. Amalgamation is propor-
tional to the arithmetic mean. Consequently, the arithmetic mean of wine$beer is not related 
to the geometric mean. 

• “so	the	researchers	feel	justified	in	their	conclusions.	But	just	to	check	even	more,	they	plot	the	
amalgamation	balance	against	log(wine/beer)	and	get	Fig.	3,	a	surprise!	There	is	no	relationship:	
correlation	=	0	 (p=0.99)”: this is not a surprise at all!!! Correlation is not “transitive”!!! As 
already pointed out by McNemar in 1949 [McNemar, Q. (1949). Psychological statistics. New 
York: John Wiley and Sons], this non-transitivity property implies that, given three quantita-
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tive random variables X, Y, and Z, a positive correlation between X and Y and a positive cor-
relation between Y and Z (in terms of Pearson’s correlation coefficients, not necessarily 
mean that X and Z will be positively correlated. In fact X and Z might be uncorrelated or even 
negatively correlated. To understand this effect we have to remember that correlation is the 
cosine of the angle between the (centred) column vectors. For example, take as X and Z two 
orthogonal vectors and Y a non-orthogonal one. One can find lot of examples about this is-
sue in the literature. 
In our case, X= log(wine/beer) is related to Y= log(spirits/(wine*beer)). In particular, 
log(wine/beer) is related to log(wine*beer) (r=-0.89, p-value=	 4.166e-08), when wine in-
creases, beer decreases and the product diminishes (see explanations above). And 
log(wine/beer)  is not related to log(spirits) (r=0; p-value=0.98), ), not a strange result (see 
ternary diagram above). In addition, the Y= log(spirits/sqrt(wine*beer)) is related to the Z= 
log(spirits/(wine+beer)), via the spirits in the numerator (see explanation above). However, 
the X= log(wine/beer) is not related to Z= log(spirits/(wine+beer)). In addition, log(wine/beer) 
is not related to log(spirits) (r=0, p-value=0.98), and it is not related to log(wine+beer) 
(r=0.13; p-value=0.58), that is, THE RATIO wine/beer IS NOT RELATED TO THE TOTAL 
wine+beer (very common case in CoDa, by the way).  

 
I enjoyed a lot working with these data and I find they will be very useful for students in our Co-
Da-courses. Once more, thanks a lot! 
 
 
 
 
 
 
 


